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1 Predator |φq|2 prey 〈N〉 model for drift wave /

zonal flow feedback

This section illustrates how the dynamics of the interplay between the drift wave tur-
bulence and zonal flows can be undersold from the perspective of ecological models.
Recall that the wave kinetic equation for the drift wave action density

∂〈N〉
∂t
− ∂

∂kr
Dk

∂

∂kr
〈N〉 = γ〈N〉 − ∆ωn

N0

〈N〉2 (1)

implies the drift wave energy equation

∂〈E〉
∂t

= −
∫
d3k

(
∂ωk
∂kr

)
Dkr

∂〈N〉
∂kr

+

∫
d3kω〈C(N)〉+ surface term, (2)

Notably, the k−radial space diffusion in 2 is quadratic in the sheering field (with a
negative sign),

Dkr ∼ O(〈Ṽ 2〉)). (3)

meaning it is determined by the sheering field’s energy. The second RHS term in (2)
accounts for growth and not-action conserving scattering that gives damping,∫

d3kω〈C(N)〉 ∼ γ〈ε〉 − 1

τNL
〈ε〉2. (4)

Meanwhile, expression for the energy of the E ×B flow, i.e. |φq|2, is

∂|φq|2

∂t
= Γq

[
∂〈N〉
∂kr

]
|φq|2 − γd|φq|2, (5)

where γd is the zonal flow damping term, and the growth coefficient is related to the
gradient of the wave population N in k space. The |Γq|φq|2 is quadratic in sheer with a
positive sign. The energy flow in the resulting coupled system (2,5) has a feedback loop
shown below, and the evolution of a system can be viewed as a predator-prey model
between the drift wave action density 〈N〉 and the zonal flow |φq|2:

∂

∂t
〈N〉 − ∂

∂kr
Dk

∂

∂kr
〈N〉 = γk〈N〉 −

∆ωk
N0

〈N〉2, (6)

∂

∂t
|φq|2 = Γq

[
∂〈N〉
∂kr

]
|φq|2 − γd|φq|2 − γNL[|φq|2]|φ2

q| (7)
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Reducing the system further to the mean-field predator-prey model,

∂

∂t
N = γN − αV 2N −∆ωN2, (8)

∂

∂t
V 2 = αNV 2 − γdV 2 − γNL(V 2)V 2, (9)

one can recover the phase portrait of the system (8,9) by classifying the fixed points.
Neglecting the nonlinear damping γNL = 0, the non-trivial stationary points are

N =
γ

∆ω
, V 2 = 0, and N =

γd
α
, V 2 = −−αγ + γd∆ω

α2
, (10)

hence, notably, in presence of flow V 2 > 0, there is a stable saddle point with drift wave
intensity is proportional to flow damping. The finite flow V 2 > 0 requirements sets the
threshold on the grow rate γ, capturing the phenomenology of improved confinement
threshold, namely: increase of energy increases the growth but does not increase the
fluctuations because the energy goes into the flow. Enough growth (i.e. critical power
threshold Pth) is needed to drive the flow against the damping. Without the residual
nonlinear damping, the saddle becomes a center point, and phase trajectories satisfy

γd
γ

(
αN

γd
− ln

αN

γd
) +

αV 2

γ
− ln

αv2

γ
= const. (11)

Initial zonal modes originate from incoherent drift wave beats, i.e. the beating of
different modes (for example, Ṽ−k and ∇2φ̃k+q) will put the noise into the zonal mode:

∂

∂t
(∇2
⊥φ)q ∼ −(Ṽ∇∇2φ̃)q. (12)
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Equation (12) is identical to the Langevin equation with the coherence time of the noise
τcq set by the coherence time of stochastically driven Zonal Flow field (the correlation
time of the vorticity flux 〈Γ∇2φΓ∇2φ〉 ),

∂

∂t
〈(∇2φ̃)2〉 ∼

∑
q

(Ṽ · ∇∇2φ̃)qτcq(Ṽ · ∇∇2φ̃)q (13)

Also analogous to the Langevin equation for Brownian motion, the intensity of the
zonal vorticity will grow linearly in time,

〈(∇2φ̃)〉 ∼ Dt. (14)

Adding the noise term to the zonal mode growth equation allows for modulationaly
stable systems that still drive zonal flows.

1.0.1 Impact of geometry

Switching from cylindrical to toroidal geometry can increase the screen-
ing length and inertia of zonal flows. Specifically, since the divergence
of polarization current is related to the vorticity evolution,

∇ · Jpol ∼
d

dt
ρs∇2φ, (15)

the impact of toroidicity is to modify the length scale due to particle
trapping effects. The trapping effects occur at sufficiently low collision-
ality ν∗ and increase the length scale from Larmour radius i to banana
with

δr ∼ vDτD ∼
ρivτi
R

Rq

vτi
√
ε
∼
√
ερθi, (16)

where ρθi is the poloidal gyroradius. Relevance of particle trapping
implies that the zonal flow response in toroidal geometry depends on
collisionality ν∗, with Pfirsch-Schluter regime ν∗ � ε−3/2 recovering
the cylindrical geometry results.

1.0.2 On mechanisms of ZF damping

In the Banana and Plateu regimes, the ZF are dumped by the friction
between the bananas of the trapped particles and the flow. This colli-
sional flow dumping mechanism is scale-invariant. In Pfirsch Schluter
regime, the flow damping is related to magnetic pumping, i.e. the vis-
cous dissipation caused by the need to compress a fluid element in order
to move it from the weak field side to the strong field. The relative
importance between viscosity νk2 and damping D0k

2 depends on scale
since νk2r → 0 for large kr. Another scale-independent flow dumping
mechanism is neutral friction due to charge exchange, which can be
important for zonal flows at the edge and relevant to L-H transition.
For sufficiently strong flows, the quasilinear theory calculation for the
flux vorticity equation

∂t〈∇2
⊥φ〉 = ∂r〈ṽ∇2

⊥φ̃〉+ lin. damping (17)
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reveals a possibility for a wave flow resonance,

∇2
⊥φ̃ = − ṽr∂r〈ṽ2rφ〉

−i(ω − kθvE)
+

αh̃

−i(ω − kθvθ)
, (18)

resulting in a turbulent diffusion of vorticity

〈ṽ∇2
⊥φ̃〉 = −

∑
k

|ṽrk |2Πδ(ω − kθvE)∂r〈∇2
rφ〉+ ... (19)

The effect of wave flow resonance gets stronger as the zonal flow grows,
and provides another collisionless damping mechanism.

The predator-prey model can recover additional phenomenology of L-H transition by
considering multiple predators. For instance, having three coupled equations for the
energy (solid curve), zonal flow (dotted curve), and mean pressure gradient (dashed
curve)

∂tε = εN − a1ε2 − a2V 2ε− a3V 2
ZF ε, (20)

∂tVZF = b1
εVZF

1 + b2V 2
− b3VZF, (21)

∂tN = −c1εN − c2N +Q. (22)

allows capturing the phenomenology of the transition phase. In (20-22), the pressure
gradient is contributing to transport and damping the turbulence but is also driving it
(replaces the growth rate).

2 L-H transition

The transition between regimes of low (L-mode) and improved (H-mode) confinememnt
occurs as a bifurcation known as L-H transition. The mechanism of L-H transition is
the radial decorrelation of turbulence by radially sheared E×B flows, as illustrated via
predator-prey models in the previous section. (Although other possible LH transition
mechanisms have also been proposed, such as the orbit loss mechanism). Due to the
popularity of the improved confinement regime, conditions for L-H transition and the
underlying physics are being studied. Important properties of L-H transition are listed
below.
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• Steepening of the edge gradient

• Pedestal formation

• Drop of fluctuations at low k (high k transport persists)

• Increase in E ×B shear and formation of 〈Er〉 well with two strong E ×B shear
layers on each side of the well, suppressing the turbulence. The transport barrier
can develop on either the inner or outer layer of the well.

• Transition occurs at some power threshold Pth.

– The mechanism of heating the plasma does not matter.

– The power threshold scales with the density and toroidal field,

Pth ∼ 0.049B0.8
T n0.72

e S0.94, (23)

although experiments show that there is a minimum nmin(Pth) in density
dependence of Pth occurring near the LOC-SOC transition density. The
similarity of nmin(Pth) and nLOC−SOC is explained by the fact that both are
related to ion energy transport in Ohmically heated plasmas, which is par-
ticularly relevant at lower densities. Collisional ion-electron energy coupling
is quadratic in density

nνε(Te − Ti) ∝ n2, (24)

and so at low densities most of the energy is wasted into electrons instead of
building a sufficient ion pressure gradient ∇Pi for the L−H transition.

– the “∇B drift” asymetry. Assuming the toroidal field is into the plane, the
lower single null LSN has a lower Power threshold than the higher single
null. Somewhere in the middle is the double null.
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– Critical transition condition is local and resides at the plasma edge, as ev-
idenced by L-H transitions triggered by sawteeth during L-mode discharge
at power just below the transition threshold P < Pth,

– L-H hysteresis in power threshold. The power to go up is different from the
power to come back PLH > PHL. The hysteresis phenomenon is still poorly
understood because it is hard to isolate from ELMs.

One of the ITER ideas is to make the transition at low density and
increase density, relying on hysteresis to keep you in H mode

– The power threshold in tokamaks is different for different isotopes; for ex-
ample, Pth in D is lower than H due to lower transport in D-plasmas. For
stellarators, the poser threshold is independent of the isotope.

• Although the H-mode was first discovered on tokamaks (ASDEX), it has since
been demonstrated on stellarators (W7-AS) as well.

• Occurs in both limiter and diverted plasmas, although has not yet been shown in
experiments with an outside limiter.

2.1 Relation to the inverse cascade

In a strict sense, an inverse cascade is a continuous transfer, i.e., flow in scale
space. This should be contrasted with discrete scale interaction (energy cascades
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from drift waves at large k to Zonal Flows at small k). This nonlocal transfer in
k space allows to avoid the development of broadband turbulence and improves
confinement.

3 Momentum transport and intrinsic rotation

Development of Charge Exchange Recombination Spectroscopy in the late ’80s enabled
experimental measurement of toroidal velocity and temperature profiles in tokamaks.
Subsequent studies of momentum transport inferred a non-diffusive momentum flux
component and observed intrinsic rotation in H-mode plasmas. Particularly notable
was the plasma rotation observed in ICRF heated tokamaks since it occurred in the
absence of external torque from neutral beams.

Although momentum carried by ICRF waves was investigated as a
possible external source, experiments on Ohmically heated tokamaks
with POH = PRF matched the ICRF tokamak results and disproved
the wave momentum scenario. As ICRF generates a high energy tail,
matching of results for POH = PRF also suggested that orbit loss does
not explain the effect.
Meanwhile, the presence of intrinsic torque was demonstrated in the
counter-NBI experiments:
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Intrinsic rotation speed is subsonic, but it is nevertheless significant. Associated sheared
toroidal rotation improves confinement by contributing to the electric field

〈E〉 =
∇P
n

+ 〈v〉 ×B, (25)

and helping to stabilize resistive wall modes (“kinks”). Early studies of intrinsic rotation
produced a ”Rice Scaling” that related the increments of rotation speed ∆Vφ to the
ratio between the increments in plasma energy content ∆W at the L-H transition and
the current Ip,

∆Vφ ≈
∆W

Ip
. (26)

Another important example of intrinsic rotation is the momentum transport bifurca-
tions occurring at the LOC-SOC transition, i.e. the flip of rotation profile as the density
passes the nLOC−SOC. Subsequent decrease in density results in a backflip, although a
hysteresis is present:

Transition from SOC to IOC results in another flip, recovering the rotation direction
from LOC regime. Because the SOC and IOC differ in the type of turbulence, this
points to the relation between the nature of turbulence and intrinsic rotation. Shortly
after the early experiments suggested χφ ∼ χi, it was recognised that diffusion alone is
not sufficient to explain the change in profiles, and so the momentum flux should also
contain a momentum pinch (V < 0) term:

Π = −χφ
∂〈vφ〉
∂r

+ V (r)〈V φ〉. (27)

The pinch by itself, however, is still not sufficient to explain the intrinsic rotation, which
leads to the addition of a non-diffusive part of the Reynolds stress, i.e. residual stress:

Π = −χφ
∂〈vφ〉
∂r

+ V (r)〈V φ〉+ Πresid, (28)

where
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Πresid = nmi

[
〈ṽE,rṽ||〉+

〈 c
B
Ẽr

c

B
Ẽ||
〉
− Bθ

BT

〈ṽE,rṽθ
]
. (29)

The presence of Πresid explains the spin-up of plasma

∂

∂t

∫
dr〈Vφ〉 = −Πresid|boundary0 , (30)

and points at the importance of the boundary. Calculating the parallel Reynolds stress
for ITG modes

∂

∂t
ṽ||k + ṽ||k = −ṽrk

∂〈v||〉
∂r
−
ik||
ρ
p̃ki + ..., (31)

∂p̃ki
∂t

+
p̃

τck
= −ṽr

∂〈p〉
∂r
− p0ik||v̂||k (32)

shows that the intrinsic rotation is driven by the ion pressure gradient

Πresid ∼
∑
k

〈ṽ2r〉k(...)
∂〈pi〉
∂r

. (33)

Notably, in Renolds stress

〈ṽrṽ||〉 = −χφ
∂〈v〉
∂r

+ dresid
∂〈p〉
∂r

(34)

the dresid is proportional to the odd spectral moment,

dresid ∼
∑

(...)k|||φk|2, (35)

implying that nonzero dresid requires symmetry breaking, similar to the necessity for
reflectional symmetry breaking in the mean-field theory of the turbulent magnetic dy-
namo.

Multiple mechanisms for symmetry breaking exist, some of the simpler ones being
the shift of the spectrum due to E × B shear, yielding 〈k||〉 and hence finite 〈kθk||.
Somewhat more generally, the symmetry breaking in 〈kθk||〉 is also produced due to
spectral dispersion with intensity gradient I ′,
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